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In  a previous paper, the inviscid stability of a swirling far wake was investigated, 
and the superposition of a swirling flow on the axisymmetric wake was shown to 
be initially destabilizing, although all modes investigated eventually become 
more stable a t  sufficiently large swirl. The most unstable disturbances were non- 
axisymmetric modes with negative azimuthal wavenumber n representing helical 
wave paths opposite in sense to the wake rotation. The disturbance growth rate 
appeared to increase continuously with In], while all modes with In1 > 1 repre- 
sented disturbances which are completely stable for the non-swirling wake. 
I n  the present analysis, both timewise and spacewise growth rates are calculated 
for the lowest three negative non-axisymmetric modes (n = - 1, - 2 and - 3). 
Vortex intensity is characterized by a swirl parameter q proportional to the ratio 
of the maximum swirling velocity to the maximum axial velocity defect. The 
large wavenumbers associated with the disturbances at large 1.1 allow the n = - 1 
mode to have the minimum critical Reynolds number of 16 (q 2~ 0.40). The other 
two modes investigated have minimum Reynolds numbers on the neutral curve 
of 31 (n = - 2, p = 0-60) and 57 (n = - 3, q = 0.80). For each mode, the neutral- 
stability curve is shown to shift rapidly towards infinite Reynolds numbers once 
the swirl becomes sufficiently large. Some of the most unstable swirling flows 
are shown to possess spacewise amplification factors almost ten times that for 
the most unstable wavenumber for the non-swirling wake a t  moderate Reynolds 
numbers. 

1. Introduction 
Much effort has been expended both experimentally and theoretically in 

recent attempts to understand the properties of aircraft trailing vortices. 
In  part 1 of the present study (Lessen, Singh & Paillet 1974) we considered the 
inviscid stability of a wake and vortex system designed to resemble qualitatively 
the flow in just such a trailing vortex, and found that the far wake flow became 
stable, for given azimuthal wavenumber n, only when the vortex intensity had 
reached a fairly large value. The mean flow assumed for the analysis was the 
Lamb (1932, p. 592) exponential vortex superimposed on the self-similar axi- 
symmetric wake. The problems involved in relating this assumed flow to that in a 
real aircraft vortex were readily admitted, but such an approximation should 
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be more realistic than the discontinuous patching of a rigid-body rotating jet 
and potential vortex used in some previous studies (for instance, see Uberoi, 
Chow & Narain 1972; Lessen, Deshpande & Hadji-Ohanes 1973). 

The analysis in part 1 was originally undertaken to determine how the stable 
vorticity distribution of a trailing vortex acts to stabilize the normally unstable 
axial flow in the vortex core. The laminar Reynolds number of aircraft wakes is 
approximately 106 while the Reynolds number based on a turbulent viscosity is 
still very large, so that use of the inviscid equations seemed appropriate. However, 
the inviscid results indicated that the flow became even more unstable in the 
presence of moderate swirl, with growth rates increasing as the magnitude of 
the disturbance wavenumber n ( < 0)  increased; that  is, the largest growth rates 
czc{ and associated values of the axial wavenumber cz increased continuously 
with In]. Thus the question of how viscosity, even a t  high Reynolds numbers, 
interferes with disturbances of high (negative) wavenumber becomes impor- 
tant. At the same time, the extremely high growth rates (compared with the 
axisymmetric wake alone) obtained for moderately swirling flow merit further 
investigation in their own right. 

Attempts to apply similarity arguments to the fully turbulent trailing vortex 
(such as those of Hoffman & Joubert 1963; Saffman 1973) have indicated that 
turbulent swirling flows cannot be consistently described by a constant eddy 
viscosity. The constant eddy viscosity model has been adopted, however, as 
the only direct means of obtaining a solution for the case of disturbances of high 
(negative) wavenumber. The results will still be rigorously valid in the case of 
laminar flows, and will provide some insight into the interaction of shear and 
rotation in more realistic flows (such as might be relevant to chemical mixing 
problems). 

2. Disturbance equations and numerical solution 
As in part 1, the vortex intensity is characterized by the swirl parameter q, 

which is proportional to the ratio of the maximum swirling velocity to the maxi- 
mum axial velocity defect. The same mean velocity profiles are examined with 
respect to non-axisymmetric disturbances: 

u = U(r )  +u’, v = Y(r)  + v’, w = W(r)  + w’, 

P = PO+P‘, 
U = exp ( -G) ,  B = 0, W = qr-1[1- exp ( - ~ z ) ] ,  

where (u, v, w) are the ( r ,  $, x) velocity components, V, is the maximum wake 
velocity defect as given by Batchelor (1964) and U ,  is the free-stream velocity. 
All quantities appearing above have been non-dimensionalized with respect to 
the length scale rs and the velocity scale Us. These profiles are shown in figure 1. 

The linearized disturbance equations for u’, v’ and w’ may be derived from the 
viscous incompressible Navier-Stokes equations in a manner similar to that 
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FIGURE 1. The mean velocity profiles U(r )  and W(r).  

given by Lessen & Singh (1973). Using their notation, perturbation quantities 
of the following form are assumed: 

{d, v‘, w‘, p’ )  = (F(r) ,  iG(r) ,  H(r) ,  P( r ) )  exp [i(ax + nq5 - act)], 

where either c = c, + ici with a real or a = a, + icci with ac real. Upon substitution 
into the linearized perturbation equations, the following set of equations results: 

r2yF+r2GU’+a2r2P = ( z X ) - ~ [ ~ ( ~ F ’ ) ’ -  (azr2+n2)P] ,  P a )  
( 2  b) 
( 2 c )  
( 2 4  

r2yG+2rHW-r2P‘ = fiR)-l[r(rG’)‘- (a2r2+n2+ 1 ) G - 2 n a ,  
r2yH + r 2 G v  + rnP  = (iR)-l [r(rH’)’ - (azr2 + n2 + 1) H - 2nG], 

arF + (rG)’ + n H  = 0, 

where a prime denotes dldr, R = rs U,/v and 
nW - dW w 

y = a(U-c)+--, w = -+-. r dr r 

That equations (2) define a sixth-order system can be seen by using ( 2 4  to elimi- 
nate G” from (2  b) ,  reducing the order of that equation by one. 

The boundary conditions associated with these equations are derived from the 
requirement that all disturbance quantities vanish at large radius,‘ and that all 
quantities remain bounded and single valued a t  r = 0. These latter conditions 
are discussed by Batchelor & Gill (1962) ,  and become in the notation used here 

(3) 

49-2 

P(0) = G(0) = H(0)  = P(0) = 0 when n + 1,0, 

P(0) = G(O)+H(O) = P(0) = 0 when n = 1.  
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Since no simple solution to these equations can be found, the characteristic 
disturbance growth rates must be found numerically. To do this most con- 
veniently the equations are transformed into a set of six first-order differential 
equations: 

dZi/dr = A ,  Zj, (4) 

= 

- 0 0 0 0 r-l 0 
0 0 0  -a - r-1 - n/r 
0 0 r-l 0 0 0 

l a n  
r 2 FR 0 

a( U - c )  r + nW 
- n 2 W + -  irR 

0 iaR 0 0 
+ iarR( U - c )  

r 
0 

+ iRra( U - c )  - 

These six first-order homogeneous ordinary differential equations and the as- 
sociated boundary conditions define an eigenvalue problem for the various para- 
meters that appear in the equations. A stability investigation normally consists 
of a systematic search for the complex phase speed (and hence the disturbance 
growth rate) as a function of the other parameters. If spacewise amplification is 
sought, the frequency is assumed to be real and the complex wavenumber 
becomes the eigenvalue. 

The use of cylindrical co-ordinates introduces an artificial singularity a t  the 
origin which may be treated by standard power-series methods. Equations (4) 
may be arranged in the form 

where power-series expansions for U ( r )  and W ( r )  have been substituted in (4) 
before rearrangement to ensure that the matrices {A$)} and {Bij)  contain only 
constants. This formulation shows that the equations are regularly singular 
a t  r = 0 ;  and power-series solutions valid near Y = 0 may be constructed by the 
method of Frobenius (where the eigenvalues of B, are the six roots of the indicia1 
equation). After enforcement of the boundary conditions, three vector solutions 
remain and may be programmed for recursive numerical evaluation. Unfortu- 
nately, the series can be summed with useful accuracy only for quite small values 
of r .  

The perturbation equations ( 2 )  also possess an irregular singularity at  r = 03. 

Under these circumstances there are techniques for constructing approximate 
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solutions that are asymptotically valid near the singularity. Equations (2) 
can be conveniently rearranged in the form 

dY&r = J i jq  ( 6 )  

under the approximation that U ( r )  2: 0 and W(r)  N q/r,  which becomes quite 
accurate for r > 3, where 

{yi) = {E”, G ,  H ,  p, E”, H) ,  
0 0 0 0 1 0  

0 0 0 0 0 1  
- n / r  0 0 0  -a - r--1 

(& = 

ia in 0 -- -- 
R R R  

2q in 
0 

n2 nq  
r2 r2 p2+-+- 

0 

0 0 iaR -- l o  
r 

n2+l n q  inR 1 +- -  0 -- P ” 7  ,).2 ?. r 
2n 
r2 
- 

f 

with p2 3 a2-iaRc. According to the methods given in Wasow (1965, p, l l l ) ,  
a uniformly valid asymptotic approximation to the solution a t  large radii 
may be obtained in the form 

“ 1  Y 2 exp(Q(r))rDZ(r), where Zi N 2 bf)-+, as r+co for rES.  
k = O  

Q is a diagonal matrix in which each element is a polynomial in r,  and D is a 
constant diagonal matrix. The solution will be valid only in some open sector S of 
the complex r plane about the singularity. The theory, using the form ( 6 )  of the 
differential equations, shows that the order of the highest-order polynomials 
in Q is one, and that S is a sector about the positive real r axis with angle less 
than n. 

Rather than using the involved procedure outlined by Wasow, the asymptotic 
solutions can be obtained by assuming a solution of the form 

substituting this in the equations and comparing like powers of r-l. Eigenvalue 
problems arise which determine whether such a solution can exist at all, thus 
determining what values A and D must take. This procedure gives h = & a and 
A = -t /3 (twice), with D = - 8 in all cases. The three solutions corresponding to 
A = +a and A = + p (twice) must be discarded to satisfy the boundary conditions, 
leaving three solutions here also. Then a program to calculate the coefficients 
in the series Zi = Cbg)r-” can be written to approximate these remaining three 
solutions. 

The three asymptotic solutions discussed are solutions to the asymptotically 
valid form of the differential equations. These latter equations have been found 
to possess one set of solutions which corresponds to the two solutions that remain 
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when the viscosity is formally set equal to zero. One of these solutions must be 
discarded according to the boundary conditions; the other is 

where K ,  an nth-order modified Bessel function. This solution may be calculated 
a t  any radius directly as long as the approximation W -N q/r is valid; the other 
two solutions must still be calculated using asymptotic series. 

Having thus started solutions a t  each end of the region, the starting solutions 
are advanced by Taylor series outward from r = 0 and inward from r = rm to 
match a t  an intermediate radius. This scheme was used because of the presence 
of solutions which grow like epr for large radii as r increases, since is usually a 
large number. The inner solutions can be integrated to a large radius where the 
potential-vortex approximation to  the equations is valid, but not much beyond 
since random numerical errors will grow to overwhelm the starting solutions. 
The asymptotic series must, however, be calculated a t  quite large radii to ensure 
accuracy. Fortunately, the two outer solutions which grow most rapidly as the 
integration proceeds inwards can be obtained through numerical integration 
independently of the third, slower-growing solution, which may be calculated 
analytically a t  any radius ( r  > 3.0). 

The eigenvalue (complex phase speed) is found by matching the inward- 
and outward-integrated solution vectors at some intermediate radius for a 
particular fixed pair (a, R). The result is a 6 x 6 complex determinant whose zeros 
determine the real and imaginary parts of the phase velocity. The value of the 
determinant was calculated using a method involving Gaussian elimination, and 
the Newton-Raphson method was used to iterate to the zeros of the matching 
determinant. 

3. Results and discussion 
The original intent behind performing the viscous calculations was to trace 

the shift of minimum Reynolds numbers on the neutral-stability curves for 
various n as the swirl intensity q was increased. A uniform transition through 
large but still finite Reynolds numbers appropriate for actual trailing vortices 
was anticipated, and the computer program was written to deal with large R. 
The behaviour associated with a fixed point in the g, R plane as q is increased for 
n = + 1, - 1, - 2 and - 3 is indicated in figure 2 .  The stabilization a t  large q 
for these modes is typical of that noted for several test points in the a, R plane. 
To clarify the way in which stabilization occurs, the Reynolds number corre- 
sponding to a point on the neutral curve (with a fixed to correspond to the most 
unstable wavenumber a t  large Q )  was followed as q was increased. The results 
are shown in figure 3. Rather than shifting a t  a uniform rate, this R on the neutral 
curve reaches some minimum value for each n < 0,  and remains very close to this 
value for a large range of q before rapidly approaching very large values over a 
fairly short range of swirl. Stabilization occurs a t  higher values of q for n = - 2 
and - 3 than for n = - 1, but in all three cases the rate of increase of R becomes 
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FIGURE 2. Growth rate aC, vs. q at fixed cc = 1.34 and R = 141.4. 
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FIGURE 3. Reynolds number corresponding to a point on the neutral-stability 
curve us. q for various n. 
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almost infinite for Reynolds numbers less than 300. Investigation of timewise 
and spacewise growth rates showed that the range of q preceding stabilization 
was characterized by a regime in which the curves of constant growth became 
separated by successively greater distances, while the neutral-stability curve 
hardly shifted a t  all. Only when the growth rate became very small throughout 
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FIGURES 4 (a), ( b )  . For legend see facing page. 

the unstable region of the - R half-plane did the neutral curve move rapidly 
towards large R. 

The behaviour illustrated in figure 3 does not rigorousIy represent the minimum 
critical Reynolds number RJn) for each n, since the critical cc shifts with q. For 
this reason, and to estimate the absolute minimum critical R, neutral-stability 
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FIGURE 4. Neutral-stability curves in the a, R plane for 
(a) n = - 1, (6) n. = - 2, and (c )  n = - 3 and various p. 

curves were constructed for n = - 1, - 2 and - 3 for successive values of q; 
some of these curves are shown in figures 4(a)-(c). The curves also show that 
neither a, nor R, is very sensitive to the exact value of q,  and that the most 
unstable q and a agree with the inviscid results of part 1. (Although the a, and qc 
associated with R, differ slightly from the most unstable parameters in part I ,  
the location of constant-growth curves showed good correspondence as R -+ m.) 
The neutral-stability curve for n = - 1 and q = 0.25 and 0-6, for example, could 
not be plotted in figure 4(a )  without becoming confused with the curve for 
q = 0.45 (which is plotted) in the parameter region near R,. In  view of the com- 
putational expense required to find each eigenvalue and the complicated but 
very woak variation of R,(n, q ) ,  the R, and the associated axial wavenumbers 
a,(n,q) were determined (to a t  least two decimal places) from these curves. 
The results are summarized in table 1, where the R, for n = - 1, - 2 and - 3 are 
listed along with the associated a and q and where the related cases of most un- 
stable iinviscid flow from part 1 are also listed for comparison. 

The results show that, a t  the Reynolds numbers appropriate for an actual 
aircraft, wake, the transition from unstable to stable flow situations is probably 
a sharp function of swirl intensity, and that a t  least several modes of higher 
(negative) azimuthal wavenumber may be important even in the presence of 
turbulent mixing. The absolute minimum R, is associated with the lowest (nega- 
tive) non-axisymmetric mode, but higher modes become dominant at moderate R. 
A comparison in figure 5 of spacewise growth rates for three highly unstable 
swirling flow modes and the growth rates for the non-swirling wake (rescaled 
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Inviscid (case of largest growth rate aci) 

n a m a x  ac i Qmax 

- 1  0.3 0.1470 0.32 
- 2  1.2 0.3138 0-70 
- 3  1.7 0.3544 0.79 
- 4  2.15 0.3777 0.82 
- 5  2,6 0.3912 0.83 
- 6  3.2 0.4008 0.83 

Viscous (case of minimum critical Reynolds number) 

n UC RC 
- 1  0.42 13.9 
- 2  0.91 27.9 
- 3  1.62 48-2 

4c 
0.45 
0.7 
0.95 

TABLE 1. Most unstable situations calculated for both inviscid and viscous cases. 

R 

FIGURE 5. Spacewise amplification plotted vs. R for three highly unstable cases 
and for the wake without swirl (n = 1, q = 0). 

from Lessen & Singh 1973) shows how quickly the higher modes dominate as 
Rincreases. The viscous analysis of flow in a rotating pipe by Pedley (1969) results 
in a set of curves remarkably similar to those in figure 3 for the swirling wake. 
The close similarity with Pedley’s (1968) results for the inviscid case were dis- 
cussed in part 1, but it should be noted that the asymptotic situation he con- 
sidered corresponds to the case of fixed q, while variation with q is of primary 
importance here. The profile considered by Bergman (1969) in an inviscid study 
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of a closely allied flow showed the continued presence of instability a t  large swirl, 
but the growth rate became very small and remained confined to extremely 
small CI for larger swirl parameters than those a t  which the vortex considered 
here is stabilized. A comparison of the inviscid results for the Lamb exponential 
vortex with Bergman’s eigenvalues was not pursued in great detail in part 1 .  
However, the indication of complete stabilization at  finite swirl is supported by 
the viscous analysis described in this paper. The main difference between the 
two cases lies in the swirling component of flow since W = O ( r )  as r -+ 0 here, 
while W = O(r2) for Bergman’s model (V and V being essentially the same). 
It is quite possible that the stability characteristics of the problem are sensitive 
to this difference, as the critical layer (where y(r,) = 0)  occurs at small radius 
( r ,  N 0.01) for the most unstable non-axisymmetric modes. In  comparing his 
results with the behaviour of actual meteorological vortices, Bergman surveyed 
available data for dust devils and tornadoes and concluded that the typical case 
corresponded to a p between 2.5 and 5.0 (with a minimum observed case of 
q N 2.0). These values imply complete stabilization a t  the swirl intensities for 
which stabilization of the Lamb vortex is indicated, while the model adopted by 
Bergman exhibits a t  least several highly unstable modes a t  the Bame swirl. 
Thus the stability characteristics of these vortices may be of some help in finding 
the correct velocity distributions for atmospheric vortices. 

The authors wish to acknowledge the Control Criteria Branch of the Air Force 
Flight Dynamics Laboratory (AFFDL/FGC), which provided the computational 
facilities required for the calculations presented in this paper. 
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